Prototype-Guided Pseudo Labeling for Semi-Supervised Text Classification

Weiyi Yang¹, Richong Zhang^{1,2}*, Junfan Chen¹, Lihong Wang³, Jaein Kim¹

¹SKLSDE, School of Computer Science and Engineering, Beihang University, Beijing, China

²Zhongguancun Laboratory, Beijing, China

³CNCERT

(ACL-2023)

code: none

- 1. Introduction
- 2. Approach
- 3. Experiments

Introduction

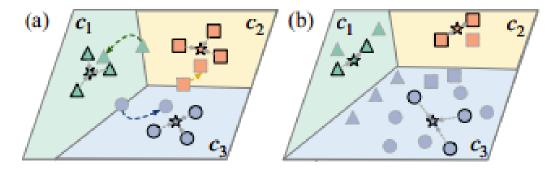


Illustration of **two** cases of pseduo-labeling problems in existing SSTC models:

- (a) underfitting near decision boundaries;
- (b) bias from imbalanced data. * denotes a prototype consisting of labeled data. Different symbols indicate different categories of labeled (bordered) and unlabeled data (unbordered). The areas with different colors indicate different categories.

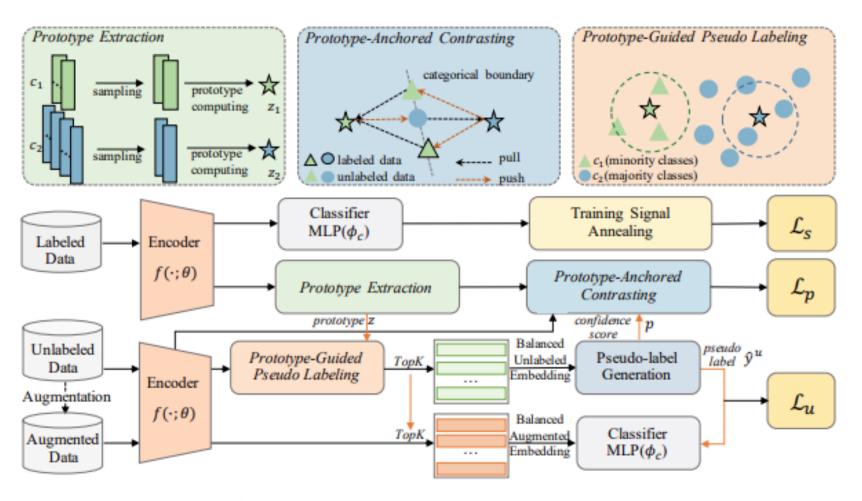


Figure 2: Overall architecture of PGPL. For labeled data, the supervised loss is computed to generate class prototypes for processing the Prototype-Anchored Contrasting module. For unlabeled data, the pseudo-labels are assigned based on Prototype-Guided Pseudo Labeling to augment the text instances for retraining the model.

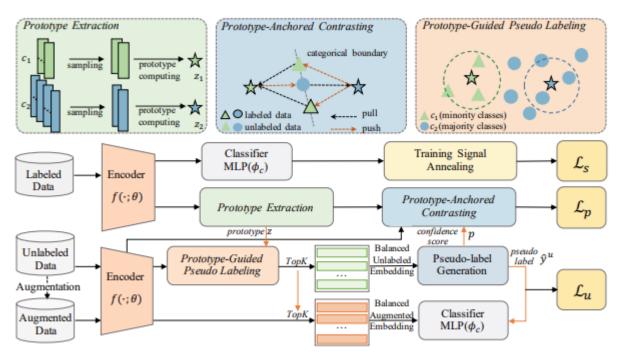


Figure 2: Overall architecture of PGPL. For labeled data, the supervised loss is computed to generate class prototypes for processing the Prototype-Anchored Contrasting module. For unlabeled data, the pseudo-labels are assigned based on Prototype-Guided Pseudo Labeling to augment the text instances for retraining the model.

$$D_l = \{ (x_1^l, y_1^l), \cdots, (x_m^l, y_m^l) \}$$
 $D_u = \{ x_1^u, \cdots, x_n^u \}$

$$g(x, \phi_y, \theta) = MLP(f(x; \theta); \phi_c),$$
 (1)

$$\eta_t = \frac{t}{T}(1 - \tau) + \tau,\tag{2}$$

$$\mathcal{L}_s = -\frac{1}{m} \sum_{i=1}^m \mathbb{I}(p_{y_i^l} < \eta_t) \log \frac{\exp(g(x_i^l, \phi_{y_i^l}, \theta))}{\sum_{c \in \mathcal{C}} \exp(g(x_i^l, \phi_c, \theta))},$$
(3)

$$\hat{y}_i^u = \arg\max_{c \in \mathcal{C}} \exp(g(x_i^u, \phi_c, \theta)),$$
 (4)

$$\mathcal{L}_{u} = -\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(x_{i}^{u}) \log \frac{\exp(g(\tilde{x}_{i}^{u}, \phi_{y_{i}^{u}}, \theta))}{\sum_{c \in \mathcal{C}} \exp(g(\tilde{x}_{i}^{u}, \phi_{c}, \theta))},$$
(5)

$$\mathbb{I}(x_i^u) = \mathbb{I}(\hat{y}_i^u = c) \wedge \mathbb{I}(d(f(x_j^u), z_c) \le d_c), \quad (6)$$

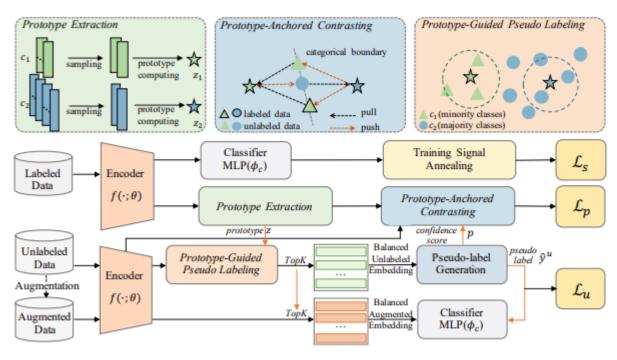


Figure 2: Overall architecture of PGPL. For labeled data, the supervised loss is computed to generate class prototypes for processing the Prototype-Anchored Contrasting module. For unlabeled data, the pseudo-labels are assigned based on Prototype-Guided Pseudo Labeling to augment the text instances for retraining the model.

$$z_c = \frac{1}{n_c} \sum_{y_i^l = c} f(x_i^l),$$
 (7)

$$n_c = \sum_{y_i^l \in D_l} \mathbb{I}(y_i^l = c), \tag{8}$$

$$\mathcal{L}_{p} = -\frac{1}{m} \sum_{i}^{m} \sum_{c} \mathbb{I}(y_{i}^{l} = c) \log \frac{\exp(-\operatorname{d}(f(\tilde{x}_{i}^{l}), z_{c}))}{\sum_{k \in \mathcal{C}} \exp(-\operatorname{d}(f(\tilde{x}_{i}^{l}), z_{k}))}$$

$$-\frac{\lambda}{n} \sum_{j}^{n} \sum_{c} p_{\hat{y}_{j}^{u}} \mathbb{I}(\hat{y}_{j}^{u} = c) \log \frac{\exp(-\operatorname{d}(f(\tilde{x}_{i}^{u}), z_{c}))}{\sum_{k \in \mathcal{C}} \exp(-\operatorname{d}(f(\tilde{x}_{j}^{u}), z_{k}))},$$
(9)

$$\mu_t^c = \sum_{\bar{x_j^u} \in B_u} \mathbb{I}(\hat{y}_j = c), \tag{10}$$

$$\gamma_t = \arg\min_{c \in \mathcal{C}} \mu^c_{< t}. \tag{11}$$

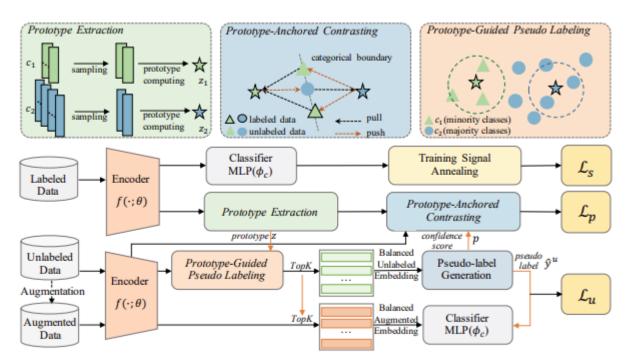


Figure 2: Overall architecture of PGPL. For labeled data, the supervised loss is computed to generate class prototypes for processing the Prototype-Anchored Contrasting module. For unlabeled data, the pseudo-labels are assigned based on Prototype-Guided Pseudo Labeling to augment the text instances for retraining the model.

$$k_{c} = \begin{cases} \mu_{t}^{c} & \text{if } \mu_{< t}^{c} - \gamma_{t} = 0\\ \mu_{t}^{c} - (\mu_{< t}^{c} - \gamma_{t}) & \text{if } 0 \leq \mu_{< t}^{c} - \gamma_{t} < \mu_{t}^{c},\\ 0 & \text{if } \mu_{< t}^{c} - \gamma_{t} \geq \mu_{t}^{c} \end{cases}$$
(12)

$$d_c = \text{TopK}(d(f(\tilde{x}_j^u), z_c), k_c), \qquad (13)$$

$$\mathcal{L} = \mathcal{L}_s + \beta_1 \mathcal{L}_u + \beta_2 \mathcal{L}_p, \tag{14}$$

Dataset	Classification Type	Class	Train	Unlabeled	Dev	Test
AG News	News Topic	4	200	5000	2000	1900
DBpedia	Wikipedia Topic	14	200	5000	2000	5000
Yahoo! Answer	QA Topic	10	200	5000	2000	6000
IMDB	Movie Review Sentiment	2	200	5000	2000	12500

Table 1: The dataset statistics for the per-class number of unlabeled, dev and test data.

Model	Α	G New	/S		IMDB		Yah	oo! An	swer	I	DBpedi	a
	10	30	200	10	30	200	10	30	200	10	30	200
Bert												
UDA	86.4	86.4	88.3	86.4	86.4	88.7	64.3	68.3	70.2	97.8	98.3	98.8
Mixtext	87.3	87.4	88.2	74.2	85.3	89.1	67.7	68.5	70.6	98.5	98.8	98.9
PGPL	87.8	88.5	89.2	88.9	90.2	90.3	67.4	69.1	70.7	98.7	99.0	99.0

Table 2: Comparison with state-of-the-arts on the AG News, DBpedia, Yahoo! Answer and IMDB test set under different partition protocols. The Wilcoxons test shows significant difference (p<0.05) between our model and baselines averaged after five runs except on Yahoo! Answer (10 labels).

Datasets	Model	$\mid K$	Acc.
	PGPL	10	87.8
AG News	SAT	20	86.4
AG News	CEST	30	87.1
	UST	30	87.7
	VAMPIRE	200	83.9
	PGPL	30	90.2
IMDB	SAT	10	69.0
IMDB	CEST	30	90.2
	SALNet	21	75.7
	VAMPIRE	200	82.2
	Delta-training	212	75.0
	PGPL	10	67.4
Yahoo!	SAT	20	61.5
Answer	SALNet	34	53.7
	VAMPIRE	200	59.9
	FLiText	500	65.1
	PGPL	10	98.7
DPnadia	SALNet	20	98.2
DBpedia	UST	30	98.6
	CEST	30	98.6

Table 3: SSTC methods with *K* training labels per class (UST, VAMPIRE, SALNet, FLiText, Delta-training, CEST, SAT).

Data setting (labeled/unlabeled)	Model	Result
	UDA	64.3
balanced / balanced	Mixtext	68.1
	PGPL	68.3
	UDA	64.8
imbalanced / balanced	Mixtext	67.7
	PGPL	68.8
	UDA	57.9
balanced / imbalanced	Mixtext	67.6
	PGPL	67.8
	UDA	64.1
imbalanced / imbalanced	Mixtext	65.5
	PGPL	67.3

Table 4: Experimental results on different data balance settings, grouped by labeled/unlabeled data.

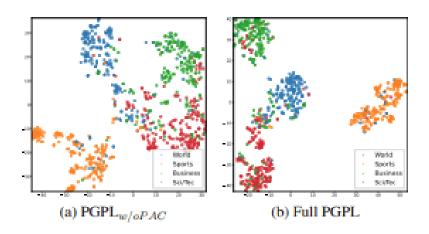


Figure 3: Comparison of t-SNE visualization results with and without PAC module on the AG News dataset.

Class	Model	Accuracy
World	PGPL	91.2
	-w/o PGP	88.6
Sports	PGPL	84.0
-	-w/o PGP	81.1
Business	PGPL	96.1
	-w/o PGP	96.0
Sci/Tech	PGPL	81.9
	-w/o PGP	80.3
All categories	PGPL	88.3
	-w/o PGP	86.5

Table 5: Experimental results on different data balance settings, grouped by labeled/unlabeled data.

Data	AG News	IMDB	
PGPL	88.3	89.7	
w/o PGP	86.5	88.2	
w/o PAC	86.2	88.9	
w/o TSA	87.2	87.9	
	·		
Data	Yahoo!Answer	DBpedia	
Data PGPL	Yahoo!Answer	DBpedia 98.4	
PGPL	68.3	98.4	

Table 6: Ablation analysis of PGPL with different modules on valid data with 10 labeled data.

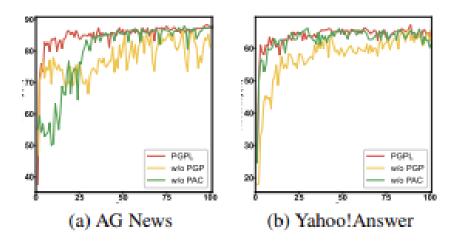


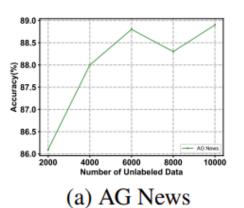
Figure 4: The comparison of training stability and convergence speed among different models..

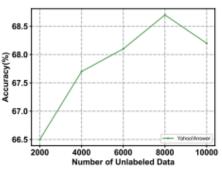
Dataset	Supervis	sed (all labels)	Supervised (10 labels)		Semi-supervised (10 labels)		
	BERT	RoBERTa	BERT	RoBERTa	PGPL(BERT)	PGPL(RoBERTa)	
AG News	91.2	92.4	80.2	80.7	87.8	88.4	
IMDB	90.4	93.5	70.9	71.2	88.9	91.2	
Yahoo!Answer	73.7	74.2	60.1	61.0	67.4	67.8	
DbPedia	99.1	99.1	96.6	96.1	98.7	98.8	
Average	88.6	89.8	76.9	77.3	85.7	86.6	

Table 7: Comparison with state-of-the-arts on the AG News, DBpedia, Yahoo! Answer and IMDB test set under different partition protocols. The results are averaged after three runs.

Hyper-parameter	PGPL
type embedding dimension d	768
Bert attention dropout	0.1
Bert hidden dropout	0.1
MLP hidden dimension	128
Sequence Length	256
batch size on labeled data	class numbers
batch size on unlabeled data	16
training epoch	20
initial learning rate of BERT	$1e^{-5}$
learning rate of MLP	$1e^{-3}$
threshold λ (AG News,IMDB)	0.2
threshold λ(DBpedia, Yahoo! Answer)	0.5
threshold β_1	1
threshold β_2	0.5
t memory set	5

Table 8: Hyper-parameter settings of PGPL.





(b) Yahoo!Answer

Figure 5: The accuracy of PGPL when varying the number of unlabeled data on AG News and Yahoo!Answer Datasets.

Thank you!